Crystal Structure of $\mathrm{Hg}_{2} \mathrm{PCl}_{2}$ and Electronic Structure of Its Main "Building Unit"-The $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)$ Octahedron

Andrei V. Olenev, Andrei V. Shevelkov, ${ }^{1}$ and Boris A. Popovkin
Inorganic Synthesis Laboratory, Department of Chemistry, Moscow State University, Moscow 119899, Russia

Received February 23, 1998; in revised form July 14, 1998; accepted July 23, 1998

Abstract

The crystal structure of $\mathbf{H g}_{2} \mathbf{P C l}_{2}$ (I) has been determined based on single crystal diffraction data. I crystallizes in a monoclinic space group $I 2 / m$ (No. 12, a nonstandard setting), $a=7.643(6) \AA, b=7.977(2) \AA, c=8.539(6) \AA, \beta=115.23(3)^{\circ}$, $Z=4, R=0.0526, w R_{2}=0.1345$. Its crystal structure is based on the $\left(\mathbf{P}_{2} \mathbf{H g}_{6}\right)$ octahedron. Such octahedra share four corners out of six, forming a layer. The arrangement of the layers follows that of the $K_{2} \mathrm{NiF}_{4}$ structure type. Relations of the structure of I to the structures of similar cadmium and mercury pnictidehalides are discussed. Some details of the electronic structure of I are discussed based on the molecular orbital calculations performed on a model $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)^{8+}$ cation. © 1999 Academic Press

INTRODUCTION

Ternary cadmium and mercury pnictidehalides have been investigated extensively for the past 30 years (1). Among them, the majority of compounds contains Z_{2}^{4-} dumbbells ($Z=\mathrm{P}, \mathrm{As}, \mathrm{Sb}$) surrounded octahedrally by six metal atoms. Although compounds which contain phosphorus are the most numerous, the P_{2}^{4-} dumbbells surrounded by mercury have been observed only in two phases, $\mathrm{Hg}_{7} \mathrm{P}_{4} \mathrm{Br}_{6}$ (2) and $\mathrm{Hg}_{9} \mathrm{P}_{5} \mathrm{I}_{6}$ (3). Another compound, which according to its composition $\mathrm{Hg}_{2} \mathrm{PCl}_{2}$ can be suspected to contain P_{2}^{4-} dumbbells surrounded by mercury, has been mentioned by Puff et al. $(4,5)$ in the course of the systematic search for cadmium and mercury pnictidehalides. Further data showed (6) that the X-ray powder pattern was very similar to that of $\mathrm{Hg}_{2} \mathrm{AsCl}_{2}$ (7), but differed from that of $\mathrm{Cd}_{2} \mathrm{AsCl}_{2}$ (8). In this paper we report the crystal structure of $\mathrm{Hg}_{2} \mathrm{PCl}_{2}$, the main building unit of which is the $\mathrm{P}_{2} \mathrm{Hg}_{6}$ octahedra, and discuss differences and similarities of the structures of cadmium and mercury pnictidehalides with the 2:1:2 stoichiometry. Some features of electronic structure of the $\mathrm{P}_{2} \mathrm{Hg}_{6}$ octahedron are also discussed based on the molecular orbital calculations performed on a model $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)^{8+}$ cation.

[^0]
EXPERIMENTAL

Mercury(I) chloride $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ ($>99.9 \%$) was used as received. Red phosphorus was washed consequently by 30% aqueous solution of KOH , water, and ethanol (twice) and then vacuum dried. The starting materials were mixed in a 1:1 ratio and vacuum sealed in a silica tube. The mixture was heated at $350^{\circ} \mathrm{C}$ for 7 days. The product appeared as a yellow-brown polycrystalline air-stable powder. An X-ray powder diffraction pattern (Nonius FR-552, $\mathrm{CuK} \alpha_{1}$ radiation) showed absence of starting materials in the sample.

A suitable yellow single crystal was selected from the product and mounted on a Nonius CAD4 goniometer head for the structure determination. Unit cell parameters $a=$ $7.643(6) \AA, \quad b=7.977(2) \AA, \quad c=8.539(6) \AA, \quad \beta=115.23(3)^{\circ}$ were refined based on 24 well-centered reflections in an angular range of $13^{\circ}<\theta<16^{\circ}$. Data were collected at ambient temperature with data collection parameters listed in Table 1. A semiempirical absorption correction was applied to data based on ψ scans of four reflections having there χ angles close to 90°. After analysis of systematic absences, a monoclinic space group $I 2 / m$ (a nonstandard setting of a space group $C 2 / m$) was chosen for the structure refinement. Positions of mercury atoms were located from direct methods (SHELXS 86 (9)) all other atomic positions were found from subsequent least-square cycles and $\Delta \rho(x, y, z)$ syntheses. Final anisotropic refinement (SHELXL 93 (10)) was carried out by a least-square full matrix procedure on F^{2} and led to $R_{1}=0.0526$ and $\mathrm{w} R_{2}=0.135$.

RESULTS AND DISCUSSION

Atomic positions and bond distances and angles are summarized in Tables 2 and 3, respectively. A view of the crystal structure is shown in Fig. 1. The basic building unit of the structure is a Hg_{6} octahedron centered with a P_{2}^{4-} dumbbell. The octahedra share four equatorial corners (the $\mathrm{Hg}(2)$ atoms) to form a layer, and an arrangement of the layers follows that of the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure type (11).

TABLE 1
Data Collection and Structure Refinement Parameters for $\mathbf{H g}_{\mathbf{2}} \mathbf{P C l}_{\mathbf{2}}$

Space group	$I 2 / m($ No. 12$)$
Unit cell dimensions, \AA and deg.	$a=7.643(6)$
	$b=7.957(2)$
	$c=8.539(6)$
	$\beta=115.23(3)$
V, \AA^{3}	$469.8(5)$
Z	4
ρ (calc.), $\mathrm{Mg} / \mathrm{m}^{3}$	7.113
λ, \AA	0.71069
$\mu, \mathrm{~mm}^{-1}$	66.558
Theta range for data collection, deg.	3.00 to 25.93
Refl. collected	535
Independent refl.	$502\left[R_{\text {(int) }}=0.0811\right]$
Data/parameters	$500 / 31$
Extinction coeff.	$0.0126(12)$
$R[I>2$ sigma $(I)]$	$R_{1}=0.0526$,
	$\mathrm{w} R_{2}=0.1354$
G-o-f on F^{2}	1.062
Largest diff. peak and hole, e $\cdot \AA^{-3}$	3.925 and -3.260

Two independent phosphorus atoms compose the P_{2}^{4-} dumbbell. Each phosphorus atom has an almost regular tetrahedral coordination of one phosphorus and three mercury atoms. The $\mathrm{P}-\mathrm{P}$ distance within the P_{2}^{4-} dumbbell ($2.18 \AA$) is almost the same as in various cadmium phosphidehalides, $2.19 \AA$ in $\mathrm{Cd}_{4} \mathrm{P}_{2} \mathrm{Cl}_{3}$ (12), $\mathrm{Cd}_{4} \mathrm{P}_{2} \mathrm{I}_{3}$ (13), and $\mathrm{Cd}_{7} \mathrm{P}_{4} \mathrm{Cl}_{6}$ (12), but differs from the values found in $\mathrm{Hg}_{7} \mathrm{P}_{4} \mathrm{Br}_{6}(2.21 \AA)(2)$ and $\mathrm{Hg}_{9} \mathrm{P}_{5} \mathrm{I}_{6}(2.13 \AA)(3)$.

Mercury atoms occupy two independent crystallographic positions. The $\mathrm{Hg}(1)$ atom is surrounded by three chlorine and one phosphorus atoms, forming a flattened tetrahedron. The $\mathrm{Hg}(2)$ atom is connected to two phosphorus atoms and linearly coordinated. The $\mathrm{Hg}-\mathrm{P}$ distances lie in the range of $2.39-2.41 \AA$ and are almost the same as those in $\mathrm{Hg}_{7} \mathrm{P}_{4} \mathrm{Br}_{6}(2.40-2.44 \AA)$. The distances $\mathrm{Hg}(1)-\mathrm{Cl}(1)$ and $\mathrm{Hg}(1)-\mathrm{Cl}(2)$ are 2.39 and $2.83 \AA$, respectively, where the $\mathrm{Cl}(1)$ is a terminal chlorine atom, while the $\mathrm{Cl}(2)$ is a bridging one. Such a description of the mercury coordination is arbitrary. There are distant chlorine atoms which may be

TABLE 2
Atomic Parameters for $\mathbf{H g}_{\mathbf{2}} \mathbf{P C l}_{\mathbf{2}}$

Atom	x / a	y / b	z / c	$U(\mathrm{eq})$
$\mathrm{Hg}(1)$	$0.7103(2)$	0	$0.2823(2)$	$0.019(1)$
$\mathrm{Hg}(2)$	$1 / 4$	$1 / 4$	$1 / 4$	$0.015(1)$
$\mathrm{Cl}(1)$	$0.8826(9)$	0	$0.1051(8)$	$0.019(1)$
$\mathrm{Cl}(2)$	0	$0.2232(8)$	$1 / 2$	$0.023(2)$
P	$0.4432(8)$	0	$0.3595(7)$	$0.004(1)$

TABLE 3
Selected Distances ((\AA) and Angles (deg.) in the Structure of $\mathbf{H g}_{2} \mathbf{P C l}_{2}$

	Distances
$\mathrm{Hg}(1)-\mathrm{Cl}(1)$	$2.392(6)$
$\mathrm{Hg}(1)-\mathrm{Cl}(2)$	$2.829(4)(\times 2)$
$\mathrm{Hg}(1)-\mathrm{P}$	$2.397(6)$
$\mathrm{Hg}(2)-\mathrm{P}$	$2.416(3)(\times 2)$
$\mathrm{P}-\mathrm{P}$	$2.177(12)$
$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{P}$	Angles
$\mathrm{Cl}(1)-\mathrm{Hg}(1)-\mathrm{Cl}(2)$	$159.5(2)$
$\mathrm{P}-\mathrm{Hg}(1)-\mathrm{Cl}(2)$	$85.87(14)(\times 2)$
$\mathrm{Cl}(2)-\mathrm{Hg}(1)-\mathrm{Cl}(2)$	$109.81(12)(\times 2)$
$\mathrm{P}-\mathrm{Hg}(2)-\mathrm{P}$	$77.8(2)$
$\mathrm{Hg}(1)-\mathrm{Cl}(2)-\mathrm{Hg}(1)$	180.0
$\mathrm{P}-\mathrm{P}-\mathrm{Hg}(1)$	$102.2(2)$
$\mathrm{P}-\mathrm{P}-\mathrm{Hg}(2)$	$108.5(4)$
$\mathrm{Hg}(1)-\mathrm{P}-\mathrm{Hg}(2)$	$108.5(2)(\times 2)$
$\mathrm{Hg}(2)-\mathrm{P}-\mathrm{Hg}(2)$	$110.2(2)(\times 2)$
	$110.9(2)$
$\mathrm{Hg}(1)-\mathrm{Cl}(2)$	
$\mathrm{Hg}(2)-\mathrm{Cl}(1)$	
$\mathrm{Hg}(2)-\mathrm{Cl}(1)$	
$\mathrm{Hg}(2)-\mathrm{Cl}(2)$	$3.16(1)(\times 2)$

regarded as completing the mercury coordination (Fig. 2). Then, coordination of the $\mathrm{Hg}(1)$ atom is completed by two chlorine atoms to a very distorted octahedron, where two cis- $\mathrm{Cl}(2)$ atoms lie $3.16 \AA$ from mercury. The same type of pseudooctahedral coordination $(2+2+2)$ of mercury with two distant cis-ligands is observed in $\mathrm{NH}_{4} \mathrm{HgCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (13). Coordination of the $\mathrm{Hg}(2)$ atom after completing by six distant chlorine atoms ($d_{\mathrm{Hg}-\mathrm{Cl}}=3.19$ to $3.43 \AA$) becomes unusual and has never been reported in literature. All chlorine atoms reside on one plane, which is almost perpendicular to the $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ linear fragment; this coordination can be described in terms of a distorted hexagonal bypiramid.

Not only the title compound, but also $\mathrm{Hg}_{2} \mathrm{AsCl}_{2}$ (7) follows the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ motif of the arrangement of $Z_{2} \mathrm{M}_{6}$ octahedra. The two structures are very similar, and even the X-ray powder diffractogram of the title compound was previously indexed by analogy with $\mathrm{Hg}_{2} \mathrm{AsCl}_{2}$ (7). Our present results show that the structure of $\mathrm{Hg}_{2} \mathrm{PCl}_{2}$ is more "symmetric," and can be solved in the space group $I 2 / m$ with the unit cell volume approximately half that of $\mathrm{Hg}_{2} \mathrm{AsCl}_{2}$, which crystallizes in the space group $C 2 / m$. The transition from the body-centered to the base-centered cell is described by the matrix

$$
\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

FIG. 1. A view of the crystal structure of $\mathrm{Hg}_{2} \mathrm{PCl}_{2}$ (top) and of a ($\mathrm{P}_{2} \mathrm{Hg}_{6}$) octahedron (bottom).

In contrast to that, $\mathrm{Cd}_{2} \mathrm{AsCl}_{2}$ (8) and $\mathrm{Cd}_{2} \mathrm{SbBr}_{2}$ (15) exhibit a distorted variant of the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure type. The trend of cadmium to achieve a tetrahedral coordination forces a twist of octahedra within a layer, as shown in Fig. 3.

Literature data show $(1-3,12,16)$ that in all cadmium and mercury pnictidehalides which contain the P_{2}^{4-} dumbbells, such anions are surrounded by six metal atoms. Two questions arise upon analysis of these data: (i) why is the coordination of the P_{2}^{4-} always octahedral and never trigonal prismatic; and (ii) why are $\mathrm{P}-\mathrm{Cd}$ separations always longer than $\mathrm{P}-\mathrm{Hg}$ in similar compounds? To shed some light on these questions, extended Hückel calculations (17) have been performed on a model octahedral cation $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)^{8+}$ (see Computational Aspects for details). The geometry of the cation was taken from the crystal structure of $\mathrm{Hg}_{2} \mathrm{PCl}_{2}$ and rearranged slightly to achieve idealized

FIG. 2. Coordination of the mercury atoms in $\mathrm{Hg}_{2} \mathrm{PCl}_{2}$. Dashed lines represent distant (not less than $3.16 \AA$) $\mathrm{Hg}-\mathrm{Cl}$ separations, see text for details.
$D_{3 d}$ symmetry, which has been observed in several cadmium derivatives, such as $\mathrm{Cd}_{4} \mathrm{P}_{2} \mathrm{Cl}_{3}$ (12), $\mathrm{Cd}_{4} \mathrm{P}_{2} \mathrm{Br}_{3}$ (16), and $\mathrm{Cd}_{7} \mathrm{P}_{4} \mathrm{Cl}_{6}$ (12). Results of calculations are shown in Fig. 4, where energy levels for the P_{2}^{4-} moiety are plotted for the isolated anion compared to that for the $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)^{8+}$ cation. As seen from drawings, all filled $\mathrm{P}-\mathrm{P}$ orbitals lower their energy upon interacting with the Hg levels.
Analysis of $\mathrm{P}-\mathrm{Hg}$ orbital interaction shows yet another two important features: (i) the e_{g} and e_{u} levels derived mainly from π orbitals of P_{2}^{4-} have become predominately $\mathrm{P}-\mathrm{Hg}$ bonding, any significant $\mathrm{P}-\mathrm{P} \pi$ interaction being lost; (ii) the $2 a_{1 \mathrm{~g}}$ and e_{u} levels have significant admixtures of the $\mathrm{Hg} d$ levels (they can be better described as $s-d_{z^{2}}$ hybrids if each Hg atom resides in a local coordinate system in which the z axis points to the inversion center of the model cation). Calculations performed for comparison on the analogous model cation $\left(\mathrm{P}_{2} \mathrm{Cd}_{6}\right)^{8+}$ showed that the most important difference between $\left(\mathrm{P}_{2} \mathrm{Cd}_{6}\right)^{8+}$ and $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)^{8+}$ was that $\mathrm{Cd} d$ levels being too low in energy did not contribute to the $\left(\mathrm{P}_{2} \mathrm{Cd}_{6}\right)^{8+}$ orbitals. We believe

FIG. 3. A view from top on a $\left(\mathrm{PHg}_{2}\right)$ octahedral layer in the structures of $\mathrm{Hg}_{2} \mathrm{PCl}_{2}$ (top) and $\mathrm{Cd}_{2} \mathrm{SbBr}_{2}$ (bottom).
this explains why $\mathrm{P}-\mathrm{Cd}$ distances are always longer than $\mathrm{P}-\mathrm{Hg}$ separations in similar phases which contain the P_{2}^{4-} anion.

We have already mentioned that the $\mathrm{P}-\mathrm{P} \pi$ bonding is lost in $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)^{8+}$; consequently, the energy levels should not be sensitive to the rotation of one PHg_{3} fragment about the three-fold axis. Then, rotation on a torsion angle $\tau=60^{\circ}$ will lead to the trigonal prismatic $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)^{8+}$ cation ($D_{3 h}$ point group), which at a first glance must have the same orbital energy as the octahedral cation. However, Fig. 5 shows a subtle increase of the total energy as a function of τ. Analysis of geometry of both cations shows that while $\mathrm{P}-\mathrm{P}$ and $\mathrm{P}-\mathrm{Hg}$ bond lengths and $\mathrm{P}-\mathrm{P}-\mathrm{Hg}$ and $\mathrm{Hg}-\mathrm{P}-\mathrm{Hg}$ bond angles remain the same, the $\mathrm{Hg}-\mathrm{Hg}$ separation (mercury atoms from different PHg_{3} units) changes from ca. $4 \AA$ in the octahedron down to $3.52 \AA$ in the trigonal prism. Thus, the increase of the total energy may be attributed to the $\mathrm{Hg}-\mathrm{Hg}$ nonbonding repulsion. As has already been shown (17), the $\mathrm{Hg}-\mathrm{Hg}$ separation of $3.35-3.45 \AA$ makes a significant contribution to the band structures of various mercury pnictidehalides which contain phosphorus or arsenic helical chains.

FIG. 4. Molecular orbitals diagram for P_{2}^{4-} as a separate anion (left) and in $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)^{8+}$ (right). The high lying unoccupied antibonding orbitals σ^{*} for P_{2}^{4-} and $2 a_{2 \mathrm{u}}$ for $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)^{8+}$ are not shown.

It should be noted that the subtraction of the $\mathrm{P}_{2} \mathrm{Hg}_{6}^{8+}$ cation as a model is somewhat arbitrary. The strength of $\mathrm{P}-\mathrm{Hg}$ interactions should not be exaggerated since each mercury atom completes its coordination by halogen and sometimes phosphorus in different compounds. To get a complete electronic structure of phases containing such fragments, band calculations can be performed. However, such calculations unravel electronic properties of the extended structures, and may not be informative enough when some peculiarities of the main "building element" are investigated.

COMPUTATIONAL ASPECTS

Extended Hückel calculations were carried out on the model cations $\left(\mathrm{P}_{2} \mathrm{Cd}_{6}\right)^{8+}$ and $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)^{8+}, d(\mathrm{P}-\mathrm{Hg})=2.40 \AA$, $d(\mathrm{P}-\mathrm{Cd})=2.45 \AA, \quad d(\mathrm{P}-\mathrm{P})=2.18 \AA, \quad \angle(\mathrm{P}-\mathrm{P}-\mathrm{Hg})=108^{\circ}$, $\angle(\mathrm{P}-\mathrm{P}-\mathrm{Cd})=108^{\circ}$. Atomic orbital parameters for phosphorus, cadmium, and mercury were taken from the literature (19).

FIG. 5. Plot of ΔE as a function of the torsion angle τ in $\left(\mathrm{P}_{2} \mathrm{Hg}_{6}\right)^{8+}$. $\tau=0^{\circ}$ for the octahedron, $\tau=60^{\circ}$ for the trigonal prism.

ACKNOWLEDGMENTS

The authors thank Dr. E. V. Dikarev (Texas A\&M University) and Dr. L. A. Kloo (Lund University) for a helpful discussion. This work is supported by the Russian Foundation for Basic Research (Grant

97-03-33275a) and by the St. Petersburg Center for Basic Research (Grant 95-0-9.2-229).

REFERENCES

1. H. Rebbah and A. Rebbah, J. Solid State Chem. 113, 1 (1994).
2. A. V. Shevelkov, E. V. Dikarev, and B. A. Popovkin, J Solid State Chem. 104, 177 (1993).
3. M. Ledésert, A. Rebbah, and Ph. Labbé, Z. Kristallogr. 192, 223 (1990).
4. H. Puff, P. Scrabs, H. Gotta, and P. Blunk, Naturwissenschaften 52, 494 (1965).
5. H. Puff and H. Gotta, Z. Anorg. Allg. Chem. 343, 225 (1966).
6. E. V. Antipov, S. N. Putilin, and R. V. Shpanchenko, JCPDS Grant-inAid Report, No. 43-495, 1992.
7. A. V. Shevelkov, E. V. Dikarev, and B. A. Popovkin, Zh. Neorg. Khim. (Russ.) 40, 1496 (1995).
8. A. Rebbah, J. Yazbeck, and A. Leclaire, Acta Crystallogr. B 36, 771 (1980).
9. G. M. Sheldrick, in "Crystallographic Computing 3" (G. M. Sheldrick, C. Kruger, and R. Goddart, Eds.), p. 175. Oxford Univ. Press, Oxford, 1985.
10. G. M. Sheldrick, in "Crystallographic Computing 6" (H. D. Flack, L. Parkanyi, and L. Saymon, Eds.), p. 111. Oxford Univ. Press, Oxford, 1993.
11. A. F. Wells, "Structural Inorganic Chemistry," 5th ed. Clarendon, Oxford, 1984.
12. A. V. Shevelkov, L. N. Reshetova, and B. A. Popovkin, J. Solid State Chem.
13. A. Rebbah, J. Yazbeck, and A. Deschanvres, Acta Crystallogr. B 36, 1747 (1980).
14. K. Sagisawa, K. Kitahawa, H. Kiriyama, and R. Kiriyama, Acta Crystallogr. B 30, 1603 (1974).
15. A. V. Shevelkov, L. N. Reshetova, and B. A. Popovkin, J. Solid State Chem.
16. I. Kassama, M. Kheit, and A. Rebbah, J. Solid State Chem. 113, 248 (1994).
17. J. H. Ammeter, H. B. Bürgi, J. C. Thibeaut, and R. Hoffmann, J. Am. Chem. Soc. 100, 3686 (1978).
18. L. A. Bengtsson-Kloo and A. V. Shevelkov, in preparation.
19. P. Pyykkoe and L. L. Lohr, Jr., Inorg. Chem. 20, 1950 (1981).

[^0]: ${ }^{1}$ To whom correspondence should be addressed. Fax: (095)9394788. E-mail: shev@inorg.chem.msu.ru.

